Thibaut Tincelin MSc (Eng)
Managing Director
Stirling Design International
Stirling Design International - Founded in 1976
- Conceptual Design
- Interior and Exterior Styling
- Naval Architecture and Marine Engineering

Joël Brétécher: Founder - Senior Designer - Former designer at Pininfarina
Thibaut Tincelin Msc (Eng): Managing Director - Naval Architect - Former naval architect at STX Europe
Stirling Design International
Specialized in Passenger Vessel, Cruise Vessels and Yacht Design.

Le Ponant
88 m Cruise Vessels
1500 m² sail area
14 – 16 knots under sail

Private Yachts
Seanest 85

L’Austral &
Le Boréal
142 m Cruise Vessels
264 Passengers
Delivery Spring 2010
Spring 2011
Eoseas project objectives

- Development of a low environmental impact cruise ship concept
- Main objectives:
 - GHG emission cut by 2
 - Enhance design, creativity and innovation. Find new architectural solutions.
 - Build a R&D road map to bring selected green technologies to maturity

- Novel esthetical and technological propositions

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Power consumption reduction</td>
<td>50 %</td>
</tr>
<tr>
<td>CO2 emission reduction:</td>
<td>50 %</td>
</tr>
<tr>
<td>SO2 emission reduction</td>
<td>100%</td>
</tr>
<tr>
<td>NOX emission reduction</td>
<td>90%</td>
</tr>
<tr>
<td>Ash emission reduction</td>
<td>100%</td>
</tr>
</tbody>
</table>
Energy management: Wind assisted propulsion

SAILS
- Use of wind energy
- Development of an innovative sails concept
- Operation and maintenance as a priority
- Total surface: 12,400 m².

PUMP PROPELLERS
- Innovative pump propellers, on shaft lines and pods
- Enhance fuel efficiency, redundancy and maneuvering

Patented rig concept (STX Europe)
Energy management: Propulsion

AERODYNAMICS DEVELOPMENT
- Technology patented by STX France
- Numerical studies and CFD
- Tested in Wind tunnel

Patented rig concept during wind tunnel trials (STX Europe)

HYDRODYNAMICS DEVELOPMENT
- 13 tank tests in 2008-2009 on different propulsion and hull architectures
State of the Art in Environmental sustainability of Ships

- Major aspects of Ship Design:
 - Performance / Weight / Cost
 - Environmental aspects?

- A long history of environmental progress in term of:
 - Ship systems
 - Industrial site: ISO 14001
 - Environmentally hazardous substances: MEPC.179(59) adopted on 17 July 2009

- Existing studies of the environmental impact of ships through Life Cycle Analysis:
 - Norwegian University of Science (2002)
SSD Project: An Industrial Consortium

- Project leaders:
 - An industrial network: NEOPOLIA
 - Coordinating company: Stirling Design International

- Industrial Consortium of the French Marine Industry:
 - STX France Cruise
 - DCNS
 - BUREAU VERITAS
 - A team of 10 SME

- An expert in Life Cycle Analysis software:
 - EVEA (Simapro dealer in France)
A common goal: to find holistic and optimum solutions for Sustainable Ship Design (SSD)

- Study of the ship and components as a whole

- Study of the ship through the entire life cycle:
 - Raw materials
 - Transport
 - Pre-transformation
 - Assembly at the yard
 - Ship operation
 - Maintenance
 - Dismantling
 - Recycling of materials

- Study of major environmental impacts through a selection of environmental criteria
Avoiding pollution transfers

Major environmental Impacts are generated during ship operation.

Reduction of environmental impacts during ship operation may induce increased pollution during construction phase and end of life of the ship.
SSD Project: An innovative approach

- Global sharing of environmental data among a large industrial consortium
 - Definition of specific materials and process of the marine industry
 - Definition of the ship life cycle: transports / consumptions / wastes

- SimaPro 7.1: The Modular and Flexible Architecture of a commercial software
 - Flexible modeling
 - Interactive results analysis
 - Large database (Eco-invent).
 - Updates and user support
 - International recognition
Environnemental Impacts

Impact Indicators
- Global warming – IPCC 2007 (CO2 equivalent)
- Eutrophication (PO4 equivalent)
- Atmospheric acidification (SO2 equivalent)
- Ozone layer depletion (CFC11 equivalent)
- Human toxicity (1.4-DB equivalent)
- Fresh water aquatic eco toxicity (1.4-DB eq.)
- Marine aquatic ecotoxicity (1.4-DB eq.)
- Terrestrial ecotoxicity (1.4-DB eq.)
- Respiratory effects (PM 2.5 equivalent)
- Abiotic depletion (Antimony - Sb - equivalent)

Flow Indicators
- Water (m3),
- Energy consumption (MJ eq.),
- Bulk waste production (kg)
- Hazardous waste production (kg)
Ship Life Cycle Assessment (LCA)

- **Life Cycle Assessment** confirms and quantifies that main environmental impact is created by fuel consumption during operation.
- **Fuel efficiency** is clearly the main opportunity to reduce life cycle emissions.
- **Emission reduction** is also achieved by using cleaner fuel and renewable energy.
Construction Phase

Reduced impacts for steel compared to aluminum

Environmental impact indicators

Ship in steel

Ship in Aluminum
Life Cycle

Reduced impact for aluminum compared to steel

Environmental impact indicators

Ship in steel

Ship in Aluminum
Case studies: Environmental Design index (for CO2 eq.)

\[C_E = \frac{2}{3} \cdot \alpha \cdot \Delta \]
Case studies: Environmental Design index (for SO2 eq.)

\[C_E = \frac{2 \cdot \alpha \cdot E}{3 \cdot \Delta} \]
For further information:
www.sustainableshipdesign.com

Thibaut Tincelin
Managing Director
Stirling Design International
6 rue Baboneau
44100 Nantes - France
Tel: 33 240 957 945
Cel: 33 609 143 485
tincelin@stirlingdesign.fr

Thank you for your attention